Engineering with a difference

Case examples of simulation use in metal 3D printing of products for Finnish industry

Erin Komi, AM Specialist

3.12.2019

Etteplan

Expertise & Services

- 1. Engineering Solutions
- 2. Software & Embedded Solutions
- 3. Technical Documentation Solutions

236,5REVENUE, EUR MILLION 2018

~ 3,500

NUMBER OF PERSONNEL

AMO TEAM OVERVIEW

AM factory design

DFAM

TEAM SKILL SET

CFD / FEM

Print process simulation

ADDITIVE MANUFACTURING SERVICES

AM ENGINEERING AfAM / DfAM

PRINT PROCESS SIMULATION

TOPOLOGY OPTIMIZATION

FEM

STRENGTHS

materials

Heavy industry expertise

Simulation driven design for AM

AM business case creation

Strong partner network

OWN RESEARCH

Etteplan AM screening service Etteplan AM Engineering service Etteplan AM SCAN to Print service Design & Manufacturing process for electronics

Own research continues...

Starting data review Ideation

Simulation driven AM design

Topology optimization
Generative design
Lattice/infill/3D modelling
FEM, CFD

Concept creation

Final concept

Detailed design & validation

Delivery to manufacturer

Orientation optimization Self-supporting design

Print process simulation FEM/CFD validation Support optimization

erin.komi@etteplan.com

Case: pressing tool for Wärtsilä

Challenge

- Wärtsilä needed to quickly create a tool to help install cylinder head valves in a new engine
- There were concerns that the initial design could not withstand the high spring forces generated during use
- Etteplan was called to redesign the part for AM – with time and manufacturing costs both being closely monitored

Topology optimization & design analysis

- Loads, boundary conditions & design space restrictions defined with the help of Wärtsilä tooling expert
- Materials considered: 316L, Ti6Al4V, MS1
- Manufacturing constraints: symmetry plane, overhang limit (45°)
- Design concepts were generated and evaluated for variations in material, design space definition, and manufacturing constraints

Load case & design space definition

Preliminary design analysis

Topology optimization

Design concept generation

erin.komi@etteplan.com

Finalizing design – geometry & analyses

- PolyNURBS created using chosen topology optimization result as a guide
- 45° overhang rule followed to ensure selfsupporting design
- FEM analysis to ensure performance criteria were met

AM Process Simulation

- Additive Works Amphyon software used to run print process simulation
- Material calibration: steel 1.2709 preset
- Supports: Part built directly on build plate, supports created at washer opening
- Low distortion levels (max. 19.3 µm) show that recoater crash during printing is not an issue

Tool positioned on build plate

Mesh: 296k elements, 43 layers

Support volume identified

Support generation

Approach summary: Simulation-driven AM design

Load case & design space definition

Topology optimization

Preliminary design analysis

Design concept generation

Finalizing design

Design analysis

AM process simulation

Optimized design geometry

Benefits

- Time from when starting data was set to final design sent to be printed
 1 week!
- Manufacturing costs below budget
- Safer design

Case: dust extraction channel for robotic sander

Background

- A customer identified a product that would benefit from AM
 - Lighter
 - Significantly better airflow characteristics
 - Lower manufacturing costs
 - Better looking
- Size: ~70 x 40 x 50 mm
- Annual volume: ~1000 pieces
- Material: aluminum or similar, painted matte black after printing
- Goal: AM redesign to reduce costs and improve surface finish → move manufacturing back to Finland

- Initial DfAM remove excess material, optimize inner channel
- Etteplan cost estimation tool
- Orientation optimization
- Design for stacking
 - 30 pc/layer, up to 5 layers per job in SLM 280
- Print process simulation

Design evolution

erin.komi@etteplan.com

- Initial DfAM remove excess material, optimize inner channel
- Etteplan cost estimation tool
- Orientation optimization
- Design for stacking
 - 30 pc/layer, up to 5 layers per job in SLM 280
- Print process simulation

Design evolution

Etteplan Cost Estimation Tool Results

1 pc/batch

Costs 6x traditional manufacturing

11 pc/batch

Breakeven point

15

erin.komi@etteplan.com

- Initial DfAM remove excess material, optimize inner channel
- Etteplan cost estimation tool
- Orientation optimization
- Design for stacking
 - 30 pc/layer, up to 5 layers per job in SLM 280
- Print process simulation

Design evolution

- Initial DfAM remove excess material, optimize inner channel
- Etteplan cost estimation tool
- Orientation optimization
- Design for stacking
 - 30 pc/layer, up to 5 layers per job in SLM 280
- Print process simulation

Design evolution

erin.komi@etteplan.com

17

- Initial DfAM remove excess material, optimize inner channel
- Etteplan cost estimation tool
- Orientation optimization
- Design for stacking
 - 30 pc/layer, up to 5 layers per job in SLM 280
- Print process simulation

Design evolution

Benefits

- Manufacturing costs reductions:
 - Fully nested build → 40% cost reduction
 - Process parameter optimization with SLM Solutions reduced printing time and costs by an additional ~25%
- Exceeded customer's expectations:
 - Improved surface finish
 - More aesthetically pleasing
 - Significantly better airflow characteristics
 - Over 50% reduction in weight
 - New style of tube connection (thread) was introduced for easier assembly
 - Component codes embedded on the surface

Case: Sandvik AM pilot

Background

- Sandvik wanted to optimize
 Geneva drive rotator piece for AM
- Goals
 - Feasible solution
 - Interchangeable
 - Lower costs
 - Lightweight
- First optimization project was done by Sandvik as a thesis work
- Sandvik decided to pilot
 Etteplan's AM design services
 with same part

Rotator piece

Thesis worker's AM redesign

AM workflow – Sandvik Geneva drive rotator piece

Design requirements

Topology Optimization

AM design

Original component by Sandvik
Design for AM as a thesis work by Sandvik
Designed for AM by Etteplan

*Price based on batch size of 50 pieces

AM design features

Contact details

Erin Komi AM Specialist erin.komi@etteplan.com Mobile: +358 40 650 7716

Tero Hämeenaho
Business Development Manager
tero.hameenaho@etteplan.com
Mobile: +358 40 579 0027

https://www.etteplan.com/services/engineering/additive-manufacturing

