

LUT Material Physics Laboratory

Ville Laitinen, MSc, Junior researcher Kari Ullakko, DSc, Professor

6.5.2019

Field of research - Magnetic Shape Memory (MSM) materials

MFG 4.0

Basic research and manufacturing

Research and modelling of the MSM materials

- · Actuation speed 6 m/s and acceleration 200 000 g
- · Positioning accuracy of few nanometers
- Efficiency up to 95 %

Single crystal growth and processing

Additive manufacturing and 3D printing

Application research and development

Micropumps and -devices for

- · Chemical microreactors
- Environmental diagnostics

Fast valves for

- Digital hydraulics
- Pneumatics

Haptics devices for

- Robotics
- · Machines and vehicles

Energy harvesters for converting electricity from mechanical vibrations

Magnetic shape memory effect in Ni-Mn-Ga

Heusler type crystal structure: Ni₂MnGa

T. Graf, C. Felser, Stuart S.P. Parkin. *Simple rules for the understanding of Heusler compounds*, Progress in Solid State Chemistry 39 (2011) pp.1-50

The MSM phenomenon was first demonstrated in Ni-Mn-Ga: K. Ullakko, et al. Appl. Phys. Lett., Vol. 69 (13), pp. 1966-1968, 1996

MSM materials generate motion

 Magnetic Shape Memory (MSM) materials strain up to 12 % when a magnetic field is applied to them

Alternating magnetic field between 0 – 0.2 T

MSM material (Ni-Mn-Ga) 1 x 2 x 20 mm³

Performance of MSM actuators

- Magnetic field as low as 8 mT
- Response time < 0.5 ms
- Actuation speed up to 5.5 m/s and acceleration 700 000 m/s²
- Positioning accuracy of few nanometers
- Efficiency over 90 % and strain is stable without energy
- Wireless source of energy
- High fatigue life, even billions of cycles

Application areas for MSM-based devices

→ Smart material structures to miniaturize and simplify electromechanical devices

MSM micropump

Piezoelectric Pump 20 mL/min

Local actuation – bidirectional magnetic field

MSM Pump 13 mL/min

- 1) MSM element
- 2) Shrinkage
- Diametrically magnetized cylindrical magnet

K. Ullakko, et al., Smart Mater. Struct. 21 (2012) 115020

MSM micropump

MSM micropump uses localized straining to transport fluid from an inlet to the outlet

Principle is similar to swallowing:

Characteristics of the MSM micropump

\sim			4.	
(JI	Jar	1tita	ative	

 Volume per cycle 80-150 nL (resolution) (scalable)

• Flow rate 0-30 mL/s at 0-300

Hz

Repeatability

Differential pressure 5-8 bars

Power consumption <1 mJ/cycle

Working ~RT ±10° (Type-I temperature twins)

• Fatigue Millions of cycles

Qualitative

- Multifunctional valve and pump
- Simple design
- Scalable
- Integrable
- Contact-free
- Discrete resolution
- Pumps gas and viscous liquids

Application areas of the MSM micropump

- ◊ Bioanalytics
- Gene technology
- Synthetic biology
- Medical applications
- Chemical microreactors
- ⋄ Environmental analytics

Field off: Small flow (or none)

Low field:

MSM begins to elongate

→ Flow increases

High field:

MSM elongates to maximum

→ Maximum flow

Field off:

Valve closes again due to flow/pressure

MSM haptic devices – act as sensors and actuators

MFG 4.0

Calculated magnetic field distribution in an MSM joystick

A. Saren, et al., (2018), Highly Perceivable Tactile Feedback by Magnetic Shape Memory Technology. 16th International Conference on New Actuators.

MSM-based Vibration Energy Harvester

Permanent magnets produce magnetic flux in MSM element

Permeability of MSM element changes when it is elongated or compressed, changing the

magnetic flux

→ Changing magnetic flux within pickup coil → Electrical current

Magnetization change can be use also for displacement measurement/sensor

MSM Displacement sensor

- High resolution MSM displacement sensor
 - Based on proportional change of permeability
 - MSM element placed inside a coil
 - Coil is a part of an oscillating circuit
 - As the MSM length changes the frequency of oscillation changes as well
 - Sensitivity below 1 um
- Other sensors proposed
 - Force and pressure
 - Strain gauge
 - Speed sensors
 - Magnetic field

MSM Spring actuator

An example actuator specifications:

- Element size 20×2.5×1.0 mm³
- Maximum stroke 0.9 mm
- Maximum output force 5 N
- Fatigue life >200 million cycles
- Rise time 1 ms (see Fig)

Adaptamat

MSM Push-push actuator

- Antagonist set-up, two actuators working against each other (push-push actuator)
- Actuator consumes power only when a movement is made
- Partial/proportional movements within the range of elongation are possible

MSM micropillars by focused ion beam milling

TESCAN FERA3 with ECR-generated Xe plasma FIB milling

6% magnetic-field-induced strain in micropillar

Musiienko, Denys, et al. "Giant magnetic-field-induced strain in Ni-Mn-Ga micropillars." Scripta Materialia 150 (2018): 173-176.

Ultrafast actuation of MSM micropillar

Ultrafast actuation of MSM micropillar

Additive manufacturing at MPL

MFG 4.0

Laser powder bed fusion (L-PBF) of Ni-Mn-Ga and other active ferromagnetic alloys

- Process optimization
- Post processing and heat treatment
- Compositional, crystallographic and magnetic characterization
- → Collaboration with Laboratory of Laser Processing

magnetic shape memory alloy. J. Laser Appl. 31 (2019) 022303. https://doi.org/10.2351/1.5096108.

V. Laitinen, A. Salminen, K. Ullakko, First investigation on processing parameters for laser powder bed fusion of Ni-Mn-Ga

Additive manufacturing at MPL

K. Ullakko, V. Laitinen, A. Saren, A. Sozinov, D. Musiienko, M. Chmielus, A. Salminen, Ni-Mn-Ga actuating elements manufactured using 3D printing, 11th European Symposium on Martensitic Transformations, Metz, 27-31 August 2018.

Additive manufacturing at MPL

Digital Light Printing (DLP) based vat photopolymerization process

- MSM micropump and microfluidics related casings
- In-house developed tools and research equipment
- Rapid prototyping

