• Skip to primary navigation
  • Skip to main content

Manufacturing 4.0

MFG 4.0

  • MFG40 Home
  • News
  • Publications
    • Technical, Economic, and Societal Effects of Manufacturing 4.0 – Automation, Adaption, and Manufacturing in Finland and Beyond
    • Tutkimusjulkaisut 2020
    • Tutkimusjulkaisut 2019
    • Tutkimusjulkaisut 2018
    • Väitöskirjat
    • Raportit
    • Blog posts
  • Working Packages
    • WP 1 Future research
    • WP 2 Automation and distributed manufacturing
    • WP 3 Decision-making, potential, and business models
    • WP 4 Education
    • WP 5 Reshaping social policies
  • Events
    • 3D-tulostuksen ajankohtaisseminaari 2.12.2020 (verkossa)
    • 3D-tulostuksen tutorkoulutus
    • Avaimet 3D-tulostukseen – ovet auki opettajille
    • Metallien 3D-tulostuksen ajankohtaisseminaari LUT-yliopisto 3.12.2019
    • Miten automaatio muuttaa sosiaaliturvaa? 30.10. Helsingin yliopisto
    • Lasertyöstöpäivät 23. – 24.10.2019
    • NSAIS-ROW 2019 – Workshop on Adaptive and Intelligent Systems and Real Options
    • Ratkaisuja tieteestä
    • Make Maintenance Better Operation Research Afternoon
  • 3D-tulostusosaajat Suomessa
    • LUT Laser & 3DP
    • Etsitkö tietoa 3D-tulostuksesta?
  • Suomeksi
  • Podcast
  • YouTube
  • Intra
  • Gallery
  • Show Search
Hide Search
You are here: Home / News / The latest MFG4.0 article on prediction of movements in the stock market

The latest MFG4.0 article on prediction of movements in the stock market

April 3, 2019 By Anna Huusko


The accurate prediction of movements in the stock market over time is of major interest for investors and governments alike. In this research, we aimed to classify the returns of a stock market, meaning the daily changes, into four categories. Instead of simply using up and down movements, we consider also whether these movements are strong or small. Our target is the well-known American stock market index S&P500 and we collected more than 130 inputs such as other related market indices and several so-called technical indicators from finance, to build our stock market classification model. Initially, we selected with feature selection from all features those that help us set up a good classification model.

As our model, we chose a Random forest, which is a popular machine learning algorithm. Subsequently, we derived several trading strategies from our classification results to profit from our predictions. One of our main findings is that the strong movements, positive and negative, contribute on average most to our trading strategies, meaning that they bring larger returns than other predictions. Since most previous models only consider two classes, whereas we use four, this indicates that differentiating among more outcomes can be beneficial for stock market predictions.

Lohrmann,C. & Luukka,P. (2019). Classification of intraday S&P500 returns with a Random Forest.International Journal of Forecasting. Volume 35. Issue. 1. p.390-407.

Tweet

Filed Under: News, WP 3 Decision-making, potential, and business models Tagged With: Christoph Lohrmann, Pasi Luukka

Copyright © 2021 · Manufacturing 4.0 - strategies for technological, economic, educational, and social-policy adoption · www.mfg40.fi · Log in